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Air quality monitoring often encounters missing data issues due to technical glitches, equipment 
malfunctions, or other causes. This study employs PM2.5 and PM10 datasets from station 6, 
calculating multiple weighted probabilities for imputation. The methodology employed in this 
study includes the simulation of missing data patterns using multivariate amputation techniques 
(MCAR, MAR, and MNAR), followed by the application of machine learning-based imputation 
methods—Random Forest and missForest. The performance of each method was assessed 
using statistical evaluation metrics: Root Mean Square Error (RMSE), Nash-Sutcliffe Efficiency 
(NSE), and Kling-Gupta Efficiency (KGE) with missing values introduced at rates of 10, 40, 
and 70 percents. The results show that missForest consistently outperforms Random Forest 
across all missingness levels and amputation types. For example, in the low missing data 
scenario (10%), MF achieves RMSE values as low as 0.83 (PM2.5) and 1.76 (PM10), with 
perfect NSE and KGE scores (1.00), while RF yields higher RMSEs and slightly lower 
efficiencies. Even under high missing data conditions (70%), MF maintains strong performance 
with RMSE values of 10.54 and NSE above 0.87. These findings highlight MF’s superior 
accuracy and robustness for handling missing air quality data. 

Keywords: 

Air Quality 

Imputation 

Missing Values 

Random Forest  

missForest 

 

 

 

1. INTRODUCTION 

 

Ambient air pollution poses a significant 

environmental concern, exerting adverse effects on human 

health. Exposure to particulate pollutants, including fine 

particulate matter and ozone, increases the risk of mortality. 

Notably, in 2015, the Global Burden of Disease report 

indicated a staggering toll, attributing 4.2 million deaths and 

103.1 million disability-adjusted life years to PM2.5 

worldwide (Burnett et al., 2014). To address this issue, 

ground-based air quality monitoring stations have been 

established, enabling real-time surveillance of air quality. 

However, these stations are often geographically dispersed, 

leading to gaps in the dataset. This gap is particularly 

prominent during the initial stages of station deployment 

(Chu & Bilal, 2019).  

The evaluation of a missing data methodology in a 

practical context involves applying it to a realistic missing 

data issue. In this regard, (Brand, 1999) proposed a 

multivariate amputation concept that replicates the absence 

of actual data. While this idea was briefly mentioned twice 

in previous literature, (Schouten et al., 2018) expanded on 

schematic concepts and introduced an amputation 

procedure capable of generating complex missing data 

scenarios. To address missing data patterns across various 

data types, including continuous, discrete, binary, unordered 

categorical, and ordered categorical variables, the Multiple 

Imputation by Chained Equations (MICE) approach has 

been effective (White et al., 2011)(Deng et al., 2016)(Zhao 
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& Long, 2016). Furthermore, in the context of Missing at 

Random (MAR) and Missing Not at Random (MNAR) 

scenarios, the Bayesian Imputation approach has shown 

superior performance (Halme & Tannenbaum, 2018). For 

high-dimensional data with a predictive focus, Bayesian 

Linear Regression has been successful (Castillo et al., 2015). 

A notable solution, MissForest (Stekhoven & Bühlmann, 

2012), offers a promising avenue for handling missing data. 

To maximize the benefits derived from imputed data 

in MICE, where reimputing the data would not alter 

standard error estimates, it is recommended to perform 

multiple imputations. According to (Graham et al., 2007) 

the optimal number of imputations (m) is suggested as 3 

into 5 imputations. Addressing the challenge of determining 

the number of imputations, (von Hippel, 2020) introduces 

a two-step approach. In the quest for identifying the best 

parameter for multiple imputation, (von Hippel & Bartlett, 

2021) employ the Maximum Likelihood method, offering 

enhanced efficiency in point estimates. This approach is not 

only less computationally intensive but also quicker, 

resulting in slightly more efficient point estimates. 

To assess the MCAR, MAR, and MNAR missingness 

mechanisms, we introduce missingness into the variable Y 

deliberately. Subsequently, we categorize the MAR and 

MNAR methods based on their consideration of different 

aspects: incomplete variable's left (LEFT/L), right 

(RIGHT/R), both tails (TAIL/T), or distributional center 

(MID). The occurrence of MAR-induced missingness in Y 

relies on X, as indicated in Figure 2, which portrays the four 

distribution functions (LEFT, RIGHT, MID, and TAIL) 

(Schouten & Vink, 2018)(Wardhana et al., 2021). In 

scenarios involving MNAR missingness, the presence or 

absence of the true value of Y influences the probability of 

Y itself being missing. Additionally, we generate three levels 

of missingness proportions: 0.1, 0.5, and 0.9. It is important 

to emphasize that these proportions represent the sampled 

ratio of incomplete cases in Y while keeping X as a constant 

covariate. To generate missing values across all conditions, 

we employ the multivariate amputation technique 

(Schouten et al., 2018). 

In the context of data characterized by non-linearity 

and non-normality, a comparison was conducted between  

Random Forest Imputation and predictive 

maintenance mean (Hong & Lynn, 2020). The application 

of Machine Learning imputation techniques extends to 

diverse fields, including meteorology observation 

(Boomgard-Zagrodnik & Brown, 2022) as well as 

geostatistics (Li et al., 2020) and (Avalos & Ortiz, 2020).  

Handling missing values in air quality data is a critical 

aspect of ensuring accurate and reliable analyses. In the 

realm of air quality assessment, missing data can arise due 

to various reasons such as sensor malfunctions (Zainuri et 

al., 2015), equipment downtime (Norazian et al., 2008), or 

data transmission issues (Junger & Ponce de Leon, 2015). 

These gaps in the data can potentially lead to biased or 

incomplete conclusions if not properly addressed. To tackle 

this challenge, several imputation techniques are commonly 

employed. These techniques involve replacing missing 

values with estimated values based on the available data. 

Methods like mean imputation (Junger & Ponce de Leon, 

2015), interpolation (Norazian et al., 2008), nearest 

neighbor imputation (Zhou et al., 2021), regression-based 

imputation (Quinteros et al., 2019), and multiple imputation 

(Zainuri et al., 2015) provide ways to fill in the gaps and 

enable more comprehensive analyses. The choice of 

imputation method depends on factors such as the nature 

of the data, the extent of missingness, and the specific goals 

of the analysis.  

This study introduces a novel approach by 

integrating multivariate amputation (MCAR, MAR, MNAR) 

with weighted probability distributions to generate more 

realistic missing data scenarios. The use of two imputation 

methods—Random Forest and missForest—was 

intentional, as they represent advanced tree-based 

algorithms suited for different strengths. Random Forest is 

widely recognized for its effectiveness in handling high-

dimensional, nonlinear datasets, while missForest builds 

upon this by incorporating an iterative, non-parametric 

framework that enhances imputation accuracy. By 

comparing the two under various missingness conditions, 

this research provides a more comprehensive understanding 

of their performance in air quality data contexts.

 

2. METHODS 

 

 

 

Dataset  

The dataset comprises air quality observations 

collected from 135 monitoring stations throughout Uganda. 

This continuous dataset encompasses calibrated hourly 
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PM2.5 and PM10 data derived from air quality monitoring 

devices and a reference-grade monitoring apparatus during 

the period between 2019 and 2020. It consists of two files, 

namely "hourly air quality data.csv" and "reference grade 

monitor hourly air quality data.csv." These files contain 

timestamps in UTC, PM2.5 and PM10 concentrations, 

unique site IDs for monitoring sites, and site coordinates 

(latitude and longitude). Analysis of the monitor dataset 

reveals mean PM2.5 and PM10 concentrations of 

37.39g/m3 and 49.61g/m3, respectively. The reference-

grade monitor employed for this data collection is the Met 

One Beta Attenuation Monitor Model 1022, specifically 

designed for hourly PM2.5 concentration measurement and 

recording. In contrast, the low-cost monitors utilize laser 

scattering technology and dual Plantower Sensors (PMS 

5003) (Sserunjogi et al., 2022). 

Method Imputation 

Imputing missing air quality data is crucial for air 

pollution research and monitoring. Various methods exist: 

the simple single imputation replaces missing values with 

estimated ones using mean (Hirabayashi & Kroll, 2017), 

median, or regression; multiple imputation creates multiple 

simulated values to capture uncertainty(Schouten et al., 

2018); spectral methods employ discrete sampling for non-

stationary time series(Alsaber et al., 2021); logistic regression 

handles non-linear relationships in time series(Chen et al., 

2022), needing substantial data. Choosing a method 

depends on data specifics and resources. A comparative 

study can help identify the most effective approach. 

Random Forest (RF) is an ensemble technique based 

on decision trees, designed to fill in missing data by 

consolidating outcomes from several decision trees (Deng 

et al., 2016). These trees differ due to their creation from 

diverse datasets, leading to distinct outcome predictions for 

the same inputs. RF then combines these predictions 

through a voting process to yield a final result. This 

imputation method boasts strong classification capabilities 

and is well-suited for managing high-dimensional data. The 

process of RF as shown in algorithm 1.  

Algorithm 1 Random Forest 

Input : Data matrix { , }obs missX X X=  

Output : Imputed data matrix, { , }obs imputedX X X=  

for i = 1 -> 4 (multiple imputations) do 

      
2{ , } obsX X   

       Initial imputation, 
0 2( , )missX N X   

       for i = 1 -> N do 

            Estimate Wt , Equation 6 

            Estimate 
0

missX  , Equation 7 

            
0 1( | , )t t

miss miss obs missX P X X X −
 

        end for 

     
i N

imputed misssX X  

    end for 

return ( )i

imputed imputedX Aggregate X  

MissForest (MF) employs an iterative method that 

utilizes the Random Forest algorithm to predict missing 

values. In each iteration, a Random Forest model is 

constructed for individual variables, leveraging observed 

data to estimate missing values. This process iterates until 

convergence, progressively refining imputed values with 

each iteration. (Zhang et al., 2021) 

Algorithm 2 missForest 

Require: X  an 𝑛 𝑥 𝑝 matrix, stopping criterion γ 

Sort X by amount of missing values of stations 

descend; 

Make an initial guess for missing values using another 

method; 

While not γ do 
imp

oldX store previously imputed matrix; 

For s in 1…p do 

    Fit a random forest : ( ) ( )~s s

obs obsy x  

    Predict  ( ) ( )using ;s s

obs obsy x  

    imp

oldX update impute matrix, using predicted ( ) ;s

obsy  

Update γ; 

Return the imputed matrix ;impX     

 

 

Process of Missing Values 

The process of generating missing values involves 

deliberately creating gaps in data to assess how a model 

performs on different complete datasets.To achieve this, 

missing values are introduced only to the testing instances, 
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while the training instances remain unaffected and 

complete. In cases where the original dataset has missing 

entries, the training instances with missing values are 

excluded, resulting in the construction of an RF model 

using fully observed training data. Three distinct missing 

mechanisms are introduced, each serving a unique purpose, 

and their specifics are outlined in (Karmitsa et al., 

2022)(Alsaber et al., 2021): 

• MAR : indicates that the likelihood of an attribute 

having missing values is influenced by the values of 

other attributes (Schouten & Vink, 2018).  

• MNAR : In this scenario, the probability of an attribute 

having missing values is connected to the attribute's 

own value. Specifically, missing values are introduced in 

one attribute, with higher attribute values being 

removed at a certain proportion(Khan & Hoque, 2020). 

• MCAR: Under this mechanism, a specific number of 

locations are chosen randomly, and the values at these 

chosen locations are removed. Importantly, the 

decision to introduce missing values is independent of 

the values of other attributes or the attribute itself (Idri 

et al., 2018). 

To examine how the rate of missing data influences 

classification outcomes, portions of values within the 

datasets are randomly removed at fractions of 10%, 40%, 

and 70%, respectively. By systematically altering the missing 

rates, the study aims to gain insights into how the presence 

of missing data impacts classification results. 

Evaluation Criteria 

The performance of MissForest and Random Forest at 

air quality multiple imputation data was tested by comparing 

prediction data in different percentages with the observed 

data using the Normalized Root Mean Square Error 

(NRMSE), the Nash-Sutcliffe efficiency (NSE), and the 

Kling-Gupta efficiency (KGE) as can see in Eq (1-4).  

1

1 N

ii

RMSE
NRMSE

X
N =

=


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1 2

0

1 2
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( )
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Figure 1. Framework of Multi Weight Probabilities 

 

 

 

3. RESULT AND DISCUSSION 

 

The multivariate continuous data, which was distributed 

across monitoring stations in Uganda with 0% missing data, 

was analyzed using Random Forest and missForest. The 

variable PM2 5, PM10, and MCAR missingness 

mechanisms were used to create the amputation. 

Considering element missingness is completely random and 

we can probably not predict that value from any other value 

in the data, it is assumed that some data is missing. The 
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Missing Completely at Random (MCAR) algorithm is 

utilized due to this. Multiple weight probabilities, along with 

the distributional center (DC), right tail (RT), and left tail 

(L), are employed to create incomplete variables (M). 

Several imputation percentages are also broken down into 

three groups: low (10%), middle (40%), and high (70%). 

Figure 2 illustrates that among all stations, station 6 

exhibited the lowest outlier values for both PM 2.5 and PM 

10. Building upon this observation, station 6 was selected as 

a key input source, aggregating data from 135 monitoring 

stations. As detailed in Table 1, station 6 maintained a mean 

PM 2.5 concentration of 37.39 g/m³ without any data gaps, 

and a mean PM 10 concentration of 49.61 g/m³, also 

without any missing values. 

 
Figure 1. Station number with PM2.5 and PM10 

 
Figure 2. Outlier in Data Station 6 

Fig 3 illustrates the distribution of data spanning 

between the lower and upper thresholds. The majority of 

the data points are within this range, with only a minimal 

portion classified as outliers. To detect outliers, a mean-

based approach is employed. This technique involves 

calculating the mean of the data and identifying data points 

that deviate beyond a specific range from this mean. 

From fig 4, we see that the kurtosis of both data PM 2.5 

and PM 10 was leptokurtic with values: 3.3029 and 3.1156. 

The skewness was positive for both data with values : 

0.4682 and 0.5168. The table 2 offers a comprehensive 

analysis of imputation techniques, specifically MF and RF, 

across various levels of missing data categorized as Low, 

Middle, and High. In the Low missing data scenario, both 

MF and RF exhibit favorable results with generally low 

RMSE values, indicating effective imputation. The NSE 

values are consistently high, implying a strong alignment 

between observed and imputed values. Additionally, the 

KGE values are notably high, reflecting robust model 

performance and accurate imputation. 

Moving to the Middle missing data scenario, a nuanced 

trend emerges. Although MF tends to yield slightly higher 

RMSE values compared to RF, both methods maintain high 

NSE values, signifying proficient representation of 

observed values. The KGE values remain elevated, 

reinforcing the notion of reliable model efficiency even in 

moderately incomplete datasets. 

 
Figure 3. Data distribution of Station 6 

Conversely, the high missing data scenario introduces 

more significant challenges. Imputation errors escalate for 

both MF and RF, as evidenced by elevated RMSE values. 

The NSE values experience a decline, particularly 

pronounced for RF, indicating a diminished concordance 

with observed data. A similar pattern emerges with the 

KGE values, illustrating reduced model efficiency in 

capturing variability under increased missing data 

conditions.   
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Table 1. Descriptive statistics of the Air Quality all station 

 

Var Unit % miss Range Mean Var Std Dev 

PM2.5 (µg/m3) 0 4.77 – 214.43 37.39 783.70 27.99 

PM10 (µg/m3) 0 1 - 499.45 49.61 1482.66 38.50 

In summation for PM 2.5 , the analysis underscores the 

effectiveness of both MF and RF imputation techniques, 

particularly in scenarios with lower levels of missing data. 

The outcomes in the High missing data scenario highlight 

the inherent difficulty of imputing highly incomplete 

datasets, with RF showing a marginally greater impact. 

Thus, tailored approaches may be necessary for addressing 

imputation challenges in varying missing data scenarios to 

ensure accurate and reliable results. 

The RF method for the NSE and KGE values equal to 

one in type L, M, and R for 10 percent amputation may be 

observed in table 3 using the method imputation for PM10. 

For all performance evaluations, the MF still outperforms 

the RF even with a 40 percent amputation for type L, M, 

and R. The table's extensive analysis reveals a 

comprehensive comparison between the MF and RF 

models, examining their performance metrics across 

distinct categories and positions. Notably, Model MF 

consistently outperforms RF in terms of RMSE and KGE 

metrics, showcasing its ability to achieve a higher level of 

agreement between predicted and observed values. This 

superiority is evident across various categories, with Model 

MF demonstrating a marginal advantage in metrics like 

RMSE and KGE, particularly noteworthy in the high  

category. Additionally, both models exhibit robust 

predictive accuracy, as evidenced by consistently high NSE 

scores across most cases. 

An intriguing observation emerges when considering 

data imputation under significant challenges. Despite a 

substantial 70% data amputation, Model MF showcases 

remarkable resilience in imputing data accurately, as 

reflected by its KGE scores nearing the ideal value of 1. 

Meanwhile, RF's imputation performance remains 

noteworthy, achieving up to 86% accuracy for types L, M, 

and R at the 70% amputation threshold. 

In light of these findings, a compelling conclusion 

emerges: Model MF consistently demonstrates superior 

accuracy compared to RF across diverse types and 

percentages of data amputation. Its capacity to sustain high 

precision in data imputation even under severe conditions 

further reinforces its effectiveness. Ultimately, the 

comprehensive analysis underscores Model MF's efficacy 

and reliability in predictive modeling and data imputation 

scenarios.From figure 6, it shows that most of type L, M, 

and R in 70 percent missing values can be solved with MF.  

Most of error prediction imputation were held in range 40 

– 60 as shown in orange circle.  

 

 

Table 2. PM2.5 for Imputation missForest and Random Forest with evaluation criteria RMSE, NSE and KG

Percentage type 
RMSE NSE KGE 

MF RF MF RF MF RF 

Low L 1.74 3.48 1 0.98 1 0.98 

 M 0.83 3.73 1 0.98 1 0.98 

 R 1.82 3.18 1 0.99 1 0.98 

Middle L 2.7 5.18 0.99 0.97 1 0.96 

 M 1.59 5.22 1 0.96 1 0.96 

 R 2.26 5.76 0.99 0.96 1 0.95 

High L 7.43 7.81 0.93 0.91 0.97 0.89 

 M 9.91 6.94 0.88 0.93 0.94 0.91 
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 R 10.54 8.55 0.87 0.89 0.93 0.88 

 

Table 3. PM10 for Imputation missForest and Random Forest 

 

Percentage type 
RMSE NSE KGE 

MF RF MF RF MF RF 

low L 2 5.14 1 0.99 1 0.98 

 M 3.4 4.35 0.99 0.99 1 0.99 

 R 1.76 5.15 1 0.99 1 0.98 

middle L 4.41 8.82 0.99 0.96 0.99 0.95 

 M 4.96 8.27 0.99 0.96 0.99 0.96 

 R 4.08 7.86 0.99 0.97 1 0.96 

high L 11.95 13.01 0.93 0.89 0.96 0.88 

 M 14.49 12.11 0.89 0.91 0.94 0.89 

 R 14.38 14.27 0.89 0.87 0.95 0.86 

 

 

4. CONCLUSION 

 

In conclusion, this research underscores the significance of 

accurate data imputation techniques, with MissForest 

proving to be a reliable and robust method for addressing 

missing data across varying levels of complexity in Air 

Quality Index. The findings emphasize the importance of 

tailored approaches and shed light on the limitations and 

strengths of different imputation strategies for enhancing 

data integrity and analysis.   

In conclusion, this study highlights the critical role of 

accurate imputation in air quality monitoring. The 

missForest method consistently demonstrated superior 

performance across all missingness levels and types, 

outperforming Random Forest in terms of RMSE, NSE, 

and KGE. Notably, missForest achieved near-perfect 

results in low missingness scenarios, with RMSE as low as 

0.83 (PM2.5) and 1.76 (PM10), and NSE and KGE values 

reaching 1.00. Even at a high missingness level of 70%, 

missForest maintained strong performance with RMSE up 

to 10.54 and NSE above 0.87. These findings underscore 

missForest’s robustness and reliability in handling complex 

missing data, making it a highly recommended method for 

environmental data imputation 
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