Optimization of Solvent-Assisted Exfoliation of Low Rank Coal for Few-Layer Graphene Production via Multi-Stage Ultrasonication
Keywords:
Graphene, Low Rank Coal, Exfoliation, UltrasonicationAbstract
Low rank coal (LRC), due to its abundance and carbon richness, represents a promising and sustainable precursor for graphene synthesis. This study compares the effects of different solvents CTAB (2%), NaOH (1N), H₂SO₄ (1N), and isopropyl alcohol (IPA)—on the exfoliation efficiency of LRC using a multi-stage ultrasonication approach. The resulting materials were characterized by FTIR, SEM, TEM, and XRD to evaluate their structural, morphological, and chemical properties. The findings reveal that IPA provides the most effective exfoliation, yielding few-layer graphene (FLG) with minimal oxidation and structural distortion. FTIR spectra showed reduced hydroxyl and carbonyl peaks in IPA-treated samples, while SEM and TEM confirmed more open and less-stacked layers. XRD analysis indicated decreased crystallinity and larger interlayer spacing. These results demonstrate that solvent selection plays a critical role in determining exfoliation performance, with IPA emerging as the most efficient and environmentally friendly medium for graphene production from LRC.
References
Bouramdane, Y., Fellak, S., El Mansouri, F., & Boukir, A. (2022). Impact of Natural Degradation on the Aged Lignocellulose Fibers of Moroccan Cedar Softwood: Structural Elucidation by Infrared Spectroscopy (ATR-FTIR) and X-ray Diffraction (XRD). Fermentation, 8(12). https://doi.org/10.3390/fermentation8120698
Bu, Y., Cabulong, R. B., & Kim, B. S. (2024). Plant extract-based liquid phase exfoliation enables one-step green production of two-dimensional heterostructure nanohybrids capable of dramatic improvement in polymer properties. Green Chemistry, 26(6), 3488–3506. https://doi.org/10.1039/d3gc04448c
Chen, X., Zeng, K., Sheng, C., Zhong, D., Li, J., Li, B., Luo, Y., Zuo, H., Yang, H., & Chen, H. (2025). Solar pyrolysis of low-rank coal: The effect of heat flux density and particle size. Energy, 322, 135688. https://doi.org/10.1016/j.energy.2025.135688
Dai, F., Zhuang, Q., Huang, G., Deng, H., & Zhang, X. (2023). Infrared Spectrum Characteristics and Quantification of OH Groups in Coal. ACS Omega, 8(19), 17064–17076. https://doi.org/10.1021/acsomega.3c01336
Das, B., Kundu, R., & Chakravarty, S. (2022). Preparation and characterization of graphene oxide from coal. Materials Chemistry and Physics, 290, 126597. https://doi.org/10.1016/j.matchemphys.2022.126597
Fan, F. R., Wang, R., Zhang, H., & Wu, W. (2021). Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chemical Society Reviews, 50(19), 10983–11031. https://doi.org/10.1039/C9CS00821G
Gao, L., Li, X., Lyu, X., & Zhu, X. (2024). Advances and Perspectives of Green and Sustainable Flotation of Low-Rank/Oxidized Coal: A Review. Energy & Fuels, 38(3), 1566–1592. https://doi.org/10.1021/acs.energyfuels.3c03711
Gonçalves, G. (2025). Nanocarbon-Based Composites and Their Thermal, Electrical, and Mechanical Properties. In C-Journal of Carbon Research (Vol. 11, Issue 1). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/c11010021
Menaa, F., Fatemeh, Y., Vashist, S. K., Iqbal, H., Sharts, O. N., & Menaa, B. (2021). Graphene, an Interesting Nanocarbon Allotrope for Biosensing Applications: Advances, Insights, and Prospects. Biomedical Engineering and Computational Biology, 12. https://doi.org/10.1177/1179597220983821
Moseenkov, S. I., Kuznetsov, V. L., Zolotarev, N. A., Kolesov, B. A., Prosvirin, I. P., Ishchenko, A. V., & Zavorin, A. V. (2023). Investigation of Amorphous Carbon in Nanostructured Carbon Materials (A Comparative Study by TEM, XPS, Raman Spectroscopy and XRD). Materials, 16(3). https://doi.org/10.3390/ma16031112
Nandiyanto, A. B. D., Ragadhita, R., & Fiandini, M. (2023). Interpretation of Fourier Transform Infrared Spectra (FTIR): A Practical Approach in the Polymer/Plastic Thermal Decomposition. Indonesian Journal of Science and Technology, 8(1), 113–126. https://doi.org/10.17509/ijost.v8i1.53297
Purwandari, V., Rianna, M., Marpongahtun, Isnaeni, I., Zou, Y., Harahap, M., Halawa, G., Goei, R., & Iing Yoong Tok, A. (2023). The role of biocatalysts in the synthesis of graphene nanosheets from sub-bituminous coal. Materials Science for Energy Technologies, 6, 282–289. https://doi.org/10.1016/j.mset.2023.02.004
Rustamaji, H., Prakoso, T., Devianto, H., Widiatmoko, P., Febriyanto, P., Ginting, S. br, Darmansyah, D., & Martinus, M. (2025). Recent status of application of nanocarbon composite materials for electric energy storage and conversion: A mini review. Future Batteries, 5, 100028. https://doi.org/10.1016/j.fub.2025.100028
Sun, B. (2024). Percolation and Adsorption of Volatile Organic Compounds onto Hyper Activated Renewable Carbon for Low-carbon Composites Manufacturing.
Tamuly, J., Bhattacharjya, D., & Saikia, B. K. (2022). Graphene/Graphene Derivatives from Coal, Biomass, and Wastes: Synthesis, Energy Applications, and Perspectives. Energy & Fuels, 36(21), 12847–12874. https://doi.org/10.1021/acs.energyfuels.2c00976
Zheng, X., Chen, S., Li, J., Wu, H., Zhang, C., Zhang, D., Chen, X., Gao, Y., He, F., Hui, L., Liu, H., Jiu, T., Wang, N., Li, G., Xu, J., Xue, Y., Huang, C., Chen, C., Guo, Y., … Li, Y. (2023). Two-Dimensional Carbon Graphdiyne: Advances in Fundamental and Application Research. ACS Nano, 17(15), 14309–14346. https://doi.org/10.1021/acsnano.3c03849
Downloads
Published
How to Cite
License
Copyright (c) 2025 Gimelliya Saragih, Vivi Purwandari, A. Zukhruf Akbari , Nelson Silitonga, Abdillah

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

